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Abstract: 

Background: In healthcare, machine learning is playing a significant 

role in computer-aided detection and diagnosis of lung nodules to 

reduce the load and increase the accuracy of radiologists. In the 

scenario where the datasize is limited, machine learning poses its 

advantage. The intrinsic information is discerned utilizing radiomics, 

which, in turn, serves as the foundational feature set for shaping the 

algorithmic framework employed in the classification process. 

In this study, the Lung Image Database Consortium and Image 

Database Resource Initiative (LIDC-IDRI) database was used to study 

the lung nodule classification with different numbers of radiomic 

features selected.  

Materials and Methods: A total of 1018 thoracic CT scans having 

lung nodules categorized as  "nodule ≥3 mm," "nodule <3 mm," and 

"non-nodule ≥ 3 mm," identified through a two-phase annotation 

process out of which, 300 CT scans with nodules ≥ 3 mm in size were 

used in our study. Four machine learning models, namely, Light GBM, 

Random Forest, XG Boost, and Support Vector Machine, were used 

with the optimum number of radiomic features selected using binary 

Particle Swarm Optimization combined with different topologies and 

time-varying inertia weights.  

Results and Conclusion: The XGBoost classifier with ring topology 

and linear decreasing inertia weight presented the best results, 

achieving 97.67%, 95.74%, 100%, 95.12%, 97.83%, and 98.75% for 

accuracy, precision, sensitivity, specificity, f1-score, and AUC, 

respectively.  

This outperformed a wide range of feature selection and machine 

learning approaches for lung nodule classification on the same data, as 

documented in numerous published academic papers. The proposed 

method demonstrated an improved nodule classification performance 

by utilizing optimal features obtained through the fusion of various 

inertia weights and different topologies in the feature selection method.    

                                                        JK-Practitioner2023;28(3-4):74-85 

1 Introduction 

Lung cancer is the most common reason for cancer-related fatalities 

worldwide.[1]In 2020, lung cancer leading with nearly 2.21 million 

deaths. [2] For a good prognosis, detecting lung cancer at an early stage 

is very important. [3] Calculating the likelihood of malignancy for early 

malignant lung nodules is a troublesome job. [3,4]Compared to 

standard chest radiography, computed tomography (CT) screening is 

more effective at lung cancer screening. [4,5]According to the report by 

The National Lung Screening Trial, there is a 20% reduction in lung 

cancer mortality using CT images for diagnosis. [6] 

CT has emerged as an imaging technique with greater sensitivity in 

detecting lung nodules. [7]Pulmonary nodules are lung abnormalities 

that are crucial indicators of lung cancers visible to lung computed 

tomography (CT) scans as roughly round opacities. [8]  Accurate 

diagnosis of lung nodules is challenging, laborious, and time-

consuming.[9] 

Several computer-aided diagnosis and detection techniques have been 

developed to aid radiologists in detecting and diagnosing lung nodules 

with greater accuracy and efficiency. [10,11]Lung nodules can be 

differentiated based on features like shapes, contours, textures, etc.[12] 
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]The role of Machine Learning has shown its 

remarkable significance in healthcare by assisting in 

various tasks such as disease diagnosis.[13] 

Feature selection is a vital pre-processing step in 

eliminating the redundant features and lowering the 

number of features.[14]In classification problems, 

where the quality of the selected features can 

significantly impact the accuracy and efficiency of 

classification models, feature selection is 

essential.[15] In cancer diagnosis and prognosis, 

feature selection can also improve models' 

interpretability and clinical relevance. [16]Deep 

learning, a subset of machine learning, acts as a black-

box solution to many problems, e.g., object 

recognition, natural language processing, disease 

detection in healthcare, etc. [17] 

In recent years, bio-inspired algorithms have gained 

popularity due to their capability to resolve complex 

problems that traditional algorithms struggle with. 

[18] They are designed to mimic the behaviour of 

organisms in nature and apply these behaviours to 

solve optimization problems. [19] Feature selection is 

one of the most common applications of nature-

inspired algorithms. [20] Some popular nature-

inspired feature selection algorithms include Genetic 

Algorithm, Particle Swarm Optimization (PSO), Ant 

Colony Optimization, Artificial Bee Colony, and Grey 

Wolf Optimizer. [21-26]PSO is one of the nature-

inspired algorithms. PSO is a population-based 

optimization algorithm that mimics the social 

behaviour of swarms of birds or fish. The algorithm 

works by simulating the movement of particles in 

search of the optimal solution. It has been applied to 

many optimization problems in recent years. [27,28] 

Inthe present paper, we have classified the lung 

nodule into malignant and benign categories from the 

CT images. To classify CT lung nodules, we explored 

multiple topologies, including the ring, star, pyramid, 

and random topologies, while simultaneously 

investigating various inertia weight adjustments such 

as exponential, linear, and nonlinear changes in PSO. 

[29-34]We utilized the selected features extracted 

from the CT images to perform classification using 

several popular supervised machine learning 

algorithms, namely LightGBM (LGBM), Random 

Forest(RF), XGBoost (XGB), and Support Vector 

Machines (SVM). [35-38] 

The study results are presented as the performance of 

the various classification models in terms of accuracy, 

precision, sensitivity, specificity, f1-score, and AUC 

score based on the selected features. Through our 

experimentation, we strive to contribute to the 

advancement of accurate and efficient lung nodule 

classification. The subsequent sections will delve into 

the materials and methods, results, and discussions, 

and finally, the conclusion provides a comprehensive 

evaluation of the effectiveness of our integrated 

approach and the performance of the LGBM, RF, 

SVM, and XGB algorithms. 

 

2. Materials and methods: 

2.1 Dataset used: 

The dataset was obtained from the Lung Image 

Database Consortium and Image Database Resource 

Initiative (LIDC-IDRI) database, the largest available 

open-accessible dataset of lung nodules. [39-41]The 

dataset comprises1018 diagnostic and lung cancer 

screening thoracic computed tomography (CT) scans 

with marked-up annotated lesions. These scans were 

collected from 1010 patients through collaboration 

between academic centers and medical imaging 

companies. Four experienced radiologists 

independently reviewed the scans in a two-phase 

annotation process and marked the lesions which 

belong to one of three categories ("nodule > or =3 

mm," "nodule <3 mm," and "non-nodule > or =3 

mm").[41] 

In the present study, we have used an initial 300 

scans. The 80% consensus consolidation of the 

annotation contours was computed, which means the 

annotations from all annotators by considering regions 

where at least 80% of the radiologists' annotations 

agree or overlap were combined. This approach aims 

to create a consolidated segmentation representing a 

consensus among the annotators. Also, we limited the 

scope of our study to the nodules >= 3 mm. 

2.2 Pre-processing:  
Nodule segmentation: For the nodule segmentation 

from the segmented lung images, the pylidc library, 

which is an Object-rational mapping (using SQL 

Alchemy) for the LIDC dataset, was used. [42]The 

XML file associated with each scan was analyzed 

using the scriptsto get the segmentation object. 

Feature Extraction: For all the segmented nodules, 

features such as the First Order Statistics, Shape-

based (3D), Gray Level Co-occurrence Matrix, Gray 

Level Run Length Matrix, Gray Level Size Zone 

Matrix, Neighbouring Gray Tone Difference Matrix, 

Gray Level Dependence Matrix were extracted for 

each nodule. For the feature extraction, the Python 

library PyRadiomics was used. [43] 

Feature selection: For the feature selection process 

and to investigate the impact of different inertia 

weight variations with different topologies on the 

performance of the PSO algorithm, three types of 

inertia weight functions were employed: exponential, 

linear, and nonlinear. Each function served to 

modulate the inertia weight during the optimization 

process. 

2.3Time-Varying Binary Particle Swarm 

Optimization (TV-BPSO): TV-BPSO is a BPSO 

algorithm variant that utilizes time-varying inertia 

weight to improve optimization capabilities. [44]The 

inertia weight influences the trade-off between 

exploration (global search) and exploitation (local 

search) during the optimization process. [45] 

By dynamically adjusting the inertia weight over time, 

TV-BPSO enhances the search capability and helps to 

avoid premature convergence to suboptimal solutions. 
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2.4 Time-Varying Inertia Weight (TV-IW) 

techniques: 

In this study, we enhanced the traditional BPSO by 

incorporating TV-IW techniques. TV-IW modifies the 

inertia weight during optimization to control the 

balance between exploration and exploitation. 

Specifically, we explore three types of time-varying 

inertia weights: linear, nonlinear, and exponential.[32-

34]The following equations were used for the linear, 

nonlinear, and exponentially decreasing intertia 

weights respectively. 

𝑤 =  𝑤𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝑤𝑓𝑖𝑛 𝑎𝑙  − 𝑑1 exp(
1

1 +
𝑑2. 𝑖𝑡𝑒𝑟𝑡
𝑖𝑡𝑒𝑟𝑚𝑎𝑥

) 

𝑤 = 𝑤𝑓𝑖𝑛𝑎𝑙  +  𝑤𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝑤𝑓𝑖𝑛𝑎𝑙    
𝑖𝑡𝑒𝑟𝑚𝑎𝑥 − 𝑖𝑡𝑒𝑟𝑡

𝑖𝑡𝑒𝑟𝑚𝑎𝑥

  

𝑤 = 𝑤𝑓𝑖𝑛𝑎𝑙  +  𝑤𝑖𝑛𝑖𝑡𝑖𝑎𝑙

− 𝑤𝑓𝑖𝑛𝑎𝑙    
𝑖𝑡𝑒𝑟𝑚𝑎𝑥 − 𝑖𝑡𝑒𝑟𝑡

𝑖𝑡𝑒𝑟𝑚𝑎𝑥

 
𝑛

 

 

Where d1 and d2 are control factors to control w 

between w
initial 

and w
final 

and have values 2 and 7, 

respectively. w
initial

 represents the initial inertia weight 

at starting inertia weight, and w
final 

is the inertia 

weight value when the algorithm process runs the max 

iterations. The value of w
initial 

and w
final

is 1.0 and 0.4, 

respectively. Itermax denotes the maximum iteration, 

and itert denotes the t
th

iteration. n is the modulation 

index and has a value of 1.2 in the present study. 

2.5 Different Swarm Topologies: 

Topology, which governs the interactionand 

information sharing among particles, plays a crucial 

role in the performance of BPSO. The choice of 

topology can significantly impact search behavior and 

convergence. The particles' interactions and 

information exchange in different topologies can 

impact the convergence speed and exploration 

capacity of TV-BPSO during the feature selection 

process. This study aims to comprehensively analyze 

BPSO using four topologies: Ring, Star, Pyramid, and 

Random.[46,47] 

2.6 Image Classification using supervised machine 

learning: 

Different supervised machine-learning models were 

used to classify the images using the reduced features 

from the abovementioned algorithms. These models 

were the LGBM classifier, RF classifier, XGB 

classifier, and SVM classifier.[35-38] 

2.7Performance evaluation: The metrics used in the 

evaluation process for the model performance were 

accuracy, precision, sensitivity, specificity, f1-score, 

and AUC score.  

3. Results:  

3.1 Experimental setup: In the present study, the CT 

scans from the LIDC-IDRI database were classified 

using different supervised machine learning models 

with the optimum number of features selected using 

binary PSO with the combination of different 

topologies and time-varying inertia weights. The data 

was divided into train and test data as 80:20. The 

experiments were performed using the Python 

programming language, and Google Colab was used 

as a computational platform to execute the 

experiments. For different feature extraction, the 

PyRadiomics library was used. [43]For the feature 

selection processfrom the training dataset, we utilized 

the PySwarms library by making specific 

modifications and customizations tailored to the 

requirements of our research. [48] For the 

classification model, the Scikit-learn library was used. 

[49]Figure 1 demonstrates the proposed method 

employed in the study for classifying CT scans from 

the LIDC-IDRI database.  

 

 
Fig1.Block diagram for proposed method in the present study for classification of CT nodules 

 

3.2 Feature Extraction:  

A total of 111 features were extracted from the segmented nodule images.Different features extracted from the 

CXR images are given in Table 1: 
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Table 1: Features type and number of features 

Sr. 

No. 

Feature Type Number of features 

1. First Order Statistics 19 

2. Shape-based (3D) 17 

3. Gray Level Co-occurrence Matrix 24 

4. Gray Level Run Length Matrix  16 

5. Gray Level Size Zone Matrix 16 

6. Neighbouring Gray Tone Difference Matrix 5 

7. Gray Level Dependence Matrix 14 

 Total 111 

 

Figure 2 shows the graphical representation of selected features with different topologies and inertia weights. 

Figure 2 bar plot depicting the selected number of optimal features for the different topology- inertia 

weight combinations with different classifiers 

 

3.3 Performances of feature selectionalgorithms: Table 2 shows the number of optimal features selected for 

different combinations of classifiers, topologies, and time-varying inertia weights from the training dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://pyradiomics.readthedocs.io/en/latest/features.html#radiomics.firstorder.RadiomicsFirstOrder
https://pyradiomics.readthedocs.io/en/latest/features.html#radiomics.shape2D.RadiomicsShape2D
https://pyradiomics.readthedocs.io/en/latest/features.html#radiomics.glcm.RadiomicsGLCM
https://pyradiomics.readthedocs.io/en/latest/features.html#radiomics.glrlm.RadiomicsGLRLM
https://pyradiomics.readthedocs.io/en/latest/features.html#radiomics.glszm.RadiomicsGLSZM
https://pyradiomics.readthedocs.io/en/latest/features.html#radiomics.ngtdm.RadiomicsNGTDM
https://pyradiomics.readthedocs.io/en/latest/features.html#radiomics.gldm.RadiomicsGLDM
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Table 2.Comparative analysis of the selected number of features out of 111 extracted features for 

different combinations of topologies with time-varying inertia weights for different classifiers 

Models used for 

classification 
Topology Inertia weight 

Selected optimized number 

of features  

LGB 

 

 

 

Ring 

Exponential 65 

Linear 50 

Nonlinear 53 

Star 

Exponential 57 

Linear 57 

Nonlinear 59 

Pyramid 

Exponential 45 

Linear 56 

Nonlinear 54 

Random 

Exponential 64 

Linear 54 

Nonlinear 57 

RF 

 

 

 

Ring 

Exponential 60 

Linear 63 

Nonlinear 66 

Star 

Exponential 51 

Linear 52 

Nonlinear 70 

Pyramid 

Exponential 58 

Linear 61 

Nonlinear 52 

Random 

Exponential 54 

Linear 66 

Nonlinear 58 

XGB 

 

 

Ring 

Exponential 54 

Linear 60 

Nonlinear 56 

Star 

Exponential 54 

Linear 59 

Nonlinear 61 

Pyramid 

Exponential 56 

Linear 62 

Nonlinear 64 

Random 

Exponential 55 

Linear 55 

Nonlinear 56 

SVM 

 

 

 

Ring 

Exponential 50 

Linear 50 

Nonlinear 42 

Star 

Exponential 55 

Linear 59 

Nonlinear 57 

Pyramid 

Exponential 54 

Linear 56 

Nonlinear 53 

Random 

Exponential 63 

Linear 59 

Nonlinear 49 

 

3.4 Classification algorithm comparison with different feature selection algorithms: The performance of 

different classifiers on the test dataset with selected features in terms of accuracy, precision, sensitivity, 

specificity, F1-score, and AUC is shown in Table 3. 
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Table3:Performance of classifiers with optimal features selected using different topologies with time-

varying inertia weight in BPSO 
M

o
d

el
s 

u
se

d
 f

o
r 

cl
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si
fi

ca
ti

o
n

 

T
o

p
o

lo
g

y
 

In
er

ti
a 

w
ei

g
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t 

A
cc

u
ra

cy
 

P
re

ci
si

o
n

 

S
en

si
ti

v
it

y
 

S
p

ec
if

ic
it

y
 

F
1

-s
co

re
 

A
U

C
 

LGB 

 

 

 

Ring 

Exponential 93.23 93.33 93.33 92.68 93.33 98.16 

Linear 95.35 91.84 100 90.24 95.74 98.54 

Nonlinear 97.67 95.74 100 95.12 97.83 98.00 

Star 

Exponential 94.19 93.48 95.56 92.68 94.51 98.16 

Linear 95.35 93.62 97.78 92.68 95.65 98.92 

Nonlinear 93.02 95.35 91.11 95.12 93.18 97.83 

Pyramid 

Exponential 97.67 95.74 100 95.12 97.83 97.45 

Linear 93.02 93.33 93.33 92.68 93.33 98.05 

Nonlinear 95.35 95.56 95.56 95.12 95.56 98.43 

Random 

Exponential 91.86 93.18 91.11 92.68 92.13 97.72 

Linear 93.02 93.33 93.33 92.68 93.33 96.91 

Nonlinear 96.51 95.65 97.78 95.12 96.70 98.86 

RF 

 

 

Ring 

Exponential 97.67 95.74 100 95.12 97.83 97.67 

Linear 97.67 95.74 100 95.12 97.83 97.18 

Nonlinear 95.35 93.62 97.78 92.68 95.65 97.75 

Star 

Exponential 96.51 95.65 97.78 95.12 96.70 96.86 

Linear 96.51 93.75 100 92.68 96.77 97.62 

Nonlinear 96.51 93.75 100 92.68 96.77 97.43 

Pyramid 

Exponential 97.67 95.00 100 95.12 97.83 97.48 

Linear 96.51 93.75 100 92.68 96.77 98.16 

Nonlinear 93.02 95.35 91.11 95.12 93.18 97.40 

Random 

Exponential 95.35 95.62 97.78 92.68 95.65 98.32 

Linear 96.51 95.65 97.78 95.12 96.70 97.78 

Nonlinear 95.35 95.56 95.56 95.12 95.56 97.18 

XGB 

 

 

Ring 

Exponential 94.19 93.48 95.56 92.68 94.51 97.99 

Linear 97.67 95.74 100 95.12 97.83 98.75 

Nonlinear 95.35 93.62 97.78 92.68 95.65 97.78 

Star 

Exponential 96.51 95.65 97.78 95.12 96.70 98.48 

Linear 94.19 95.45 93.33 95.12 94.38 98.05 

Nonlinear 95.35 95.56 95.56 95.12 95.56 97.99 

Pyramid 

Exponential 95.35 93.62 97.78 92.68 95.65 98.54 

Linear 93.02 93.33 93.33 92.68 93.33 98.10 

Nonlinear 91.86 91.30 93.33 90.24 92.31 97.45 

Random 

Exponential 93.02 95.35 91.11 95.12 93.18 98.37 

Linear 94.19 93.48 95.56 92.68 94.51 97.40 

Nonlinear 95.35 95.62 97.78 92.68 95.65 97.94 

SVM 

 

 

 

Ring 

Exponential 94.19 93.48 95.56 92.68 94.51 97.18 

Linear 96.51 93.75 100 92.68 96.77 96.91 

Nonlinear 95.35 93.62 97.78 92.68 95.65 97.54 

Star 

Exponential 91.86 91.30 93.33 90.24 92.31 98.54 

Linear 94.19 93.48 95.56 92.68 94.51 97.53 

Nonlinear 88.37 92.68 84.44 92.68 88.37 96.04 

Pyramid 

Exponential 93.02 93.33 93.33 92.68 93.33 96.69 

Linear 93.02 93.33 93.33 92.68 93.33 97.24 

Nonlinear 94.19 95.45 93.33 95.12 94.38 98.05 

Random 

Exponential 91.86 93.18 91.11 92.68 92.14 96.91 

Linear 96.51 93.75 100 92.68 96.77 98.00 

Nonlinear 96.51 93.75 100 92.68 96.77 96.26 
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Figure 3 visually representsthe classification performance of different classifiers on the test dataset used in the 

present study based on optimal features obtained from BPSO with various combinations of topologies and time-

varying inertia weights. 
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Fig 3: graphical representation of different performance matrices of classifiers on test dataset utilizing 

distinctive feature sets derived from varied combinations of topologies and time-varying inertia weights 

in BPSO 

4. Discussion 

The current study aimed to classify benign and 

malignant CT nodules from the LIDC-IDRI database 

using different supervised machine learning models 

with optimal feature selection through binary PSO. 

The optimal feature selection was done by exploring 
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various PSO topologies and different time-varying 

inertia weights to identify the most discriminative 

feature subsets. Each topology offers a unique 

communication mechanism among particles, 

influencing their exploration and exploitation in the 

feature space. In addition to exploring various 

topologies, we also incorporated time-varying inertia 

weights during the optimal feature selection process, 

which facilitated adaptability during optimization, 

allowing the algorithm to balance exploration and 

exploitation phases over time. 

Overall, the best values of accuracy, precision, 

sensitivity, specificity, f1-score, and AUC on the test 

dataset were observed for the XGB classifier with ring 

topology and linear decreasing inertia weight. For this 

combination, the percentage values of accuracy, 

precision, sensitivity, specificity, f1-score, and AUC 

were 97.67, 95.74, 100, 95.12, 97.83, and 98.75, 

respectively. 

On the meticulous evaluation of Table 3, we can 

divide the results broadly into two parts with an 

accuracy of more than 97% and more than 96%.For 

an accuracy of more than 97%, six combinations of 

different topology and inertia weights were observed 

for the test dataset. 

For all six combinations with accuracy greater than 

97%, the F1-score and specificity were also observed, 

with values of 97.83 and 95.12, respectively. 

For ten combinations of different topologies and 

inertia weight, more than 96% accuracy was 

observed. Two combinations show AUC greater than 

or equal to 98%, one with random topology and 

nonlinear inertia weights for the LGB classifier and 

the second with star topology with exponential inertia 

weight for the XGB classifier. In all combinations 

where the classifiers achieved accuracy greater than 

96%, the corresponding F1-score was measured to be 

96.70%. 

Average accuracy with different combinations of 

topology and inertia weight for different classifiers 

LGB, RF, XGB, and SVM is 94.69, 96.22, 93.79, and 

94.67, respectively. 

Compared to other combinations of classifiers, 

topologies, and inertia weights, the LGB classifier 

with ring topology and nonlinear decreasing inertia 

weight demonstrated the highest values in accuracy, 

precision, sensitivity, specificity, and AUC score 

when considering the overall performance. 

Machine learning and deep learning have evoked 

substantial interest among researchers and medical 

practitioners in detecting, classifying, and predicting 

the malignancy of lung nodules. Many methodologies 

are being explored and developed rigorously to 

augment the precision and dependability of lung 

nodule analysis and diagnosis. Numerous published 

academic papers suggested various methodological 

approaches to estimate the likelihood of malignancy 

in lung nodules. 

Saied etal. explored and developed AI methods for 

classifying pulmonary nodules from CT scans. They 

used texture Haralick and local binary pattern features 

in a machine learning approach, achieving an optimal 

AUC of 0.885 with random forest and a best accuracy 

of 0.819 with the support vector machine. [50] 

Qiao etal. proposed a Fuse-Long Short-Term 

Memory-Convolutional Neural Network(F-LSTM-

CNN)ensemble learning model to classify benign and 

malignant nodules by incorporating visual attributes 

and deep features to categorize benign and malignant 

nodules from the LIDC-IDRI dataset. They achieved 

accuracy, sensitivity, and specificity of 0.955, 1, and 

0.937 with an AUC of 0.995 for lung nodule 

classification. [51]  

Safta etal. classified nodules from the LIDC-IDRI 

dataset into malignant and benign categories based on 

GLCM features. In their study, the classification was 

performed with SVM for Multiple Instance Learning 

(MIL-SVM). They achieved AUC, Specificity, 

Sensitivity, and Accuracy of 0.9767, 0.9524, 0.9111 

and 0.9310 respectively. [52] 

Jena and George extracted the morphological features 

from the CT images of the LIDC-IDRI dataset and 

used a Kernel-based NonGaussian Convolutional 

Neural Network for classification. They achieved a 

classification accuracy of 87.3% .[53] 

Jiang et al. proposed a novel pixel value space 

statistics map (PVSSM) for accurately classifying 

pulmonary nodules in lung cancer diagnosis in the 

LIDC-IDRI dataset. This study used the singular 

value decomposition (SVD) method to extract 

features from the created feature matrixes. In their 

study, classification accuracies of 77.3%, 80.1%, and 

84.2% for KNN, random forest, and SVM classifiers 

were obtained, respectively. [54] 

Chen et al. utilized radiomic features as input, and for 

the classification algorithm, they used deep attention-

based MIL. They achieved a mean accuracy of 0.807 

with a standard error of the mean (SEM) of 0.069, a 

recall of 0.870 (SEM 0.061), a positive predictive 

value of 0.928 (SEM 0.078), a negative predictive 

value of 0.591 (SEM 0.155), and AUC of 0.842 (SEM 

0.074).[55] 

Sahu et al. presented a computer-aided diagnosis 

system for risk stratification of pulmonary nodules in 

the CTimages of the LIDC-IDRI dataset by fusing 

shape and texture-based features in a machine-

learning (ML) based paradigm. Using 30 dominant 

features from the pool of shape and texture-based 

features, the proposed system achieved classification 

accuracy, sensitivity, specificity, and AUC of 89%, 

88%, 89 %, and 0.92, respectively. [56] 

The results of the present study showed that the 

combination of different topologies combined with 

time-varying PSO for feature selection, with different 

supervised machine learning classification algorithms 

led to better classification performance in the context 

of accuracy, precision, sensitivity, specificity, and 

AUC score as compared to the studies as mentioned 

above [50-56]. Further exploration of the proposed 

method can help validate and enlighten the 
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effectiveness and adaptability of the parameters 

required to achieve the best result. 

6. Conclusion 

Combining different topologies with time-varying 

inertia weights has yielded a practical framework for 

optimal feature selection. This foundational step 

improved the classification performance of the 

classifiers by selecting quality discriminative features 

and discarding the least important ones. Such 

techniques can assist medical professionals in 

accurate decision-making, reducing their workloads. 

Despite being trained on limited data, the classifiers 

showed promising results with the optimal number of 

features. Deep learning classifiers can be prone to 

overfitting if trained with a small dataset, such feature 

selection techniques combined with different 

traditional machine learning classifiers can reduce 

such problems, making more robust systems. 
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